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FLOW/ACOUSTIC INTERACTION IN DUCT INFLOW

by

M C Quinn
Abstradt

Sound generation in the convection of turbulence into a flow
intake duct is discussed by examination of an idealised problem.
Ideal fluid is in motion with uniform low, subsonic velocity
above and parallel to a plane, rigid wall. A thin, rigid,
semi-infinite plate is parallel to the wall and the fluid flows
past its leading edge. The radiated sound is calculated for a
turbulent eddy modelled by a weak line vortex which is allowed to
convect passively past the leading edge of the plate. Account is
taken of the contribution to the radiated sound from the
disturbance produced by the convecting vortex in the boundary
layers on each side of the plate by means of Howe'’s (1981) theory
of displacement thickness fluctuations, the strength of the
disturbance being fixed by a leading edge Kutta condition. It is
concluded that the predicted level of the radiated sound is
substantially reduced due to the boundary layer disturbances
relative to when they are neglected. The case of the convection
of a frozen two-dimensional gust is also considered. Examination
of the analogous problem of plane wave radiation from the duct
shows that the presence of displacement waves enhanced both the
far-field intensity in the ambient fluid and the reflected field
within the duct.
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Sound produced when a turbulent eddy is ingested by a duct inflow
such as the intake duct of an engine or the entry of an exhaust
pozzle, is of interest in many industrial systess. Of concern in
similar circumstances are tbe sound fields which are radiated and
reflected at the entry of a flow intake duct due to acoustic
sources within the duct, such as a fan or propeller say. The flows of
interest are often of low Nach number and the characteristic acoustic

wavelength is large relative to the duct width.

The direct sound radiation from a compact turbulent eddy convected
past a rigid body can be thought of as the sound which is produced in
the absence of any interaction between the eddy and the flow in which
it is convected. It is governed by the strain-field produced by the
presence of the body, the details depending om the rate of working of
the eddy turbulent stresses in that field (Howe 1975). For instance
in the two-dimensional probles examined by Howe (1975) in which a line
vortex moves around tbhe edge of a thin semi-infinite rigid plate, mo
sound is produced if the vortex follows a potential flow streamline
around the edge; sound is only produced when the vortex cuts across

such streamlipes.

In the presence of flow there are additional sound sources which are
cloeely related to the incident vortical (or acoustic) disturbance.
These arise because of flow/disturbance coupling at any edges of the
object where vorticity can be generated and ejected into the flow, a
process which ie essentially viscous controlled. The mechanism

provides a means of transferring energy that is well illustrated in
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the impingement of a sound wave on the leading/trailing edge of a thin
semi-infinite rigid plate in a low subsonic, grazing mean flow and
respectively results in a net production/abeorption of acoustic

energy, Howe (1981).

In this paper we discuss sound production by the interaction of a
vortical/acoustic disturbance with an otberwise uniform duct inflow.
Though substantial amounts of acoustic emergy can be produced when the
incident flow is not relf-preserving, as in the jet-edge tone
configuration (Crigbhton 1984), in the cases examined bere the
disturbances are assumed to be sufficiently weak that both the
disturbance and acoustic particle velocity are small relative to that

of the mean flow.

The production of sound in the passive convection of a line vortex
by a low Nach number mean flow, of speed U, past the mouth of a rigid,
two-dimensional, semi-infinite duct is examined in §2. Longitudinal
standing waves are avoided in this first anmalysis by considering a
duct of infinite length. A more realistic model will also require a
tbhree-dimensional treatment to obtain predictions of the gound
produced in the ingestion of a gemeral turbulent field by a duct
inflow. The duct is formed by an infinite plane rigid wall and a thin
semi-infinite rigid plate, parallel to the wall and a distance H above
it in the fluid. H is assumed small relative to any relevant acoustic
wavelength. The mean flow Nach number N = U/c (c is the sound speed)
is small and,for convenience in the analysis, terss of order ¥* are
neglected relative to unity. Thus c and the mean fluid demsity p can
be taken as constant. The theory presented is linear with respect to

the acoustic particle velocity.




The flow model is introduced in §2.1 and the analytical problem is
formulated in £2.2. In $2.3 Howe's (1981) theory of displacement
thickness fluctuations is applied to determine the effect on the
radfated sound field of disturbances propagating in the plate boundary
layers. Pbhysically such disturbances arise from vorticity production
at the plate leading edge by the action of viscosity in response to
the unsteady velocity field of the passing vortex. The wall boundary
layer is presumably well-established and stable, unlike the thin
developing plate boundz ; ayers which are linearly unstable. In the
real flow, acoustic and thermal boundary layers, analogous to a
Stoke's layer, will also be present on the plate and wall (due to the
need to satisfy the no-slip condition at their respective surfaces)
and will be extremely thin relative to an acoustic wavelength. Any
interactions between vortex or sound shear waves, say, and boundary
layer Reynold's stresses will be insignificant over the length and
time scales which characterize the interaction of the vortex with the
duct mouth and are peglected here. Similarly aerodynamic sound
generation (Lighthill 1952) by mean or perturbed Reynold's stresses is
not included. Thus it is not necessary to account for the boundary
layer on the wall and the predomipant effect of the plate boundary

layer is accounted for by Howe's (1981) displacesest wave theory.

Ia Howe's theory, fluctuations in the displacement thickness of the
boundary lny-;s model the effect of the disturbances in tbe exterior
potential flow. Here, as in Howe (1981), the boundary layers are
modelled as uniform wall flows of speed V ¢ U and the fluctuations are
modelled as neutrally stable waves of constant fors and of long
wavelength relative to the characteristic boundary layer thickness.
The displacemsnt waves carry perturbation energy downstream into flow

regions where they are dissipated by heat, viscoeity or more




realistically perbaps, breakdown into emmll-scale turbulence. Thus
the effective interaction region must be close to the leading edge aof
the plate. This physical assumption is incorporated into the analysis
by allowing the wave-number of the displacement wmaves a small
imaginary part where necessary to ensure the convergence of certain
integrals. The strength of the displacement waves, proportiomal to
that of the vortex, is fixed by the Kutta condition that the fluid
velocity should remain finite at the plate leading edge. Viscous

effects enter the apalysis only in this indirect fashion.

Though the leading edge Kutta condition in unsteady flows has been
examined by Goldstein (1981,1983) the issue of its validity has not been
resolved. However Howe's (1981) application of the displacement wave
theory incorporating the leading edge Kutta condition to the jet-drive
mechaniem of the flue organ pipe gives encouraging agreement with
experiment. The edges of a real duct mouth will bave finite thickmess
relative to the displacement wave length scale and may be rounded
rather than sharp. BNevertbeless tbe mechanisam controlling the
flow/acoustic interaction at the mouth will be essentially the same as
that involving a thin plate. Goldstein (1984) shows that when a
laminar flow separates from a smooth body surface and is subject to an
external unsteady ‘forcing’ (e.g.,from a barmonic source), instability
waves which propagate downstream are generated and are coupled to the
source at the separation point by viscous effects. In particular for
a harmonic source the Kutta condition is satisfied at the separation
point provided that 1 << 8 ((Re“,‘ where S, Re are respectively the
Stroubal and Reynold's numbers based on the ctreamwise brdy length
scale and the upstream flow velocity. A comprebencive review of the

Kutta condition in unsteady flows is provided by Crighton (1985).




The solution for a fourier time transform of the sound field is
obtaived in §2.4 by use of a low frequency Green's function and is
found to bave two components; the direct radiation from the vortex and
the contribution from the displacement waves on the plate boundary
layers. On application of the Kutta condition we find that the total
field is simply the direct radiation mmltiplied by a factor equal to
(1-¥/U.) = .4, for a characteristic value of V/U. where U, (= U) is
the convection speed of the vortex. Thus the presence of displacement
waves substantially reduces the radiated field. Comparison of the
direct radiation is made with the solution obtained by Camnell and
Ffowcs-V¥illiams (1973) in the absence of mean flow for a linpe vortex
exhausting out of the duct. Explicit forms of tbe far-field due to
the line vortex, both in the duct and outside it, are obtained in 82.5
and are valid when the duct is wide relative to the displacement wave
length scale, characterised by the minimum distance of the vortex from
the plate. This shows that it makes little difference whether the

vortex moves above the plate or beneath it into the duct.

The results of 8§2.5 are used ip §2.6 where the radiated field
produced in the convection into the duct of an incompresgsible, frozen
two-dimensional gust is discussed. The flux of acoustic enpergy, both
to the far-field in the duct and cutside it, is calculated in §2.6.
For the line vortex case these fluxes are compared; the former is

proportional to N, the latter to N*.

In 83 a low frequency plane sound wave propagating out of the duct
replaces the line vortex as the 'incident’ souid source. The
displacement wave theory outlined above is employed. In thie case the
presence of displacement waves results in an increase in botb the far-

field intensity outside the duct and the amplitude of the reflected




field within the duct. There is experimental evideace (Davies 1987)
of such an increase in the reflection coefficient in plane wave
reflection at a flow intake. The calculation of §3.2 reveals that the
net acoustic emergy flux away from the plate leading edge is positive;
acoustic energy is generated by the displacement thickmess waves.

This is in accord with the results of Howe (1981) for the interaction
of a plane wave with a plate leading edge and of Quinn & Howe (1986).

Appendices Al-A4 contain various analytical results.




§2.1 The flow model

The problem to be considered is illustrated schematically in
figure 1. A uniform mean flow of low, subsonic velocity U proceeds
along a rigid wall (at x= = 0 in the (x:,x2) co-ordinate system of the
figure) and encounters a two-dimensional duct formed by a thin, rigid
semi-infinite plate at x= = H above the wall. A turbulent eddy
modelled by a line vortex of strengith ¥/2x comvects at speed U. along
a path x> = b, Since the flow Mach number satisfies N = U/c <<1, the
speed of sound in the fluid, ¢, may be assumed constant and in the

subsequent analysis terms of order N* are neglected relative to unity.

The aim of the analysis is to provide estimates of the sound
produced by the interaction of the vortex with the duct mouth.
Besides the 'direct radiation' from the vortex there are acoustic
sources closely related to the vortex which arise when, in response to
the velocity field of the passing vortex, additional vorticity is
ejected into the plate boundary layers at the plate leading edge. The
assumed region of this interaction is indicated schematically by the
wavy lines in figure 1. The flow region of importance to the acoustic
far-field is assumed to be the vicinity of the duct mouth, ixl ¢ B,

and should be confirmed by the results of the analysis.

The turbulent boundary layers on the wall and plate will be

extremely thin relstive to the acoustic wavelengthse concerned and
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Schematic illustration of convection of a line vortex by a

Figure 1.
upiform mean flow into a semi-infinite duct.
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Figure 2. Sketch of the idealized boundary layer model with a
displacesent wave.
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their interactions with the acoustic fields produced are assumed to be
incoherent in respect to the acoustic time and length scales of
interest. The line vortex is assumed to be sufficiently weak, compact
and incoherent with regard to the turbulent boundary layers that
additional sound fields arising from perturbed Reynolds stresses can
be neglected. Thus the wall boundary layer is excluded and the plate
boundary layers enter the model only in relation to the leading edge

interaction outlined abave.

The fluid mechanics governing the vortex is of interest only in
the effective interaction region, izl < H where the vortex (or gust of
§2.5) is assumed to convect passively at a speed U.. Variatioms in Uc
and curvture in the vortex path during the passage of the vortex past
the duct mouth due to an image system in the plate will be small
provided that ¥y/iH-hl << Uc and are neglected. A physically realistic
convected disturbance might have a convection velocity of .5U to .8U.
The simplistic modelling of the vortex means that the energetics of
the interaction, being of second order in the acoustic fluctuations
produced, is pot included explicitly in the flow model. Radiated
acoustic energy produced in the interaction is balanced by a decrease
in mean flow epergy or energy of the convected disturbance which in
the real flow might be expected to be apparent in higher turbulence

levels in the plate boundary layers downstream of the edge.

In addition to X << 1 further physically acceptable but limiting
assumptione enter the amalysis. Since typically turbulence levels
will not exceed 10% of the mean flow velocity we take un << U, un
being the characteristic hydrodynamic disturbance velocity. The
acoustic particle velocity, IV¢l (§ is a perturbation potential) will

alsc be small relative to U and U. = O(U). These inequalities may be




expressed as 1Vfgl, un < U <C c. The neglect of terms of order N*
relative to unity is for matbematical convenience. The agsumption of
an acoustically compact interaction region should be satisfied
provided that the duct height is small relative to any relevant
acoustic wavelength, i.e. H << c/w for a characteristic radian
frequency w. Effects due to thermal diffusion processes can be
assumed to be insignificant in view of the relatively short time
envisaged for the passage of the disturbance through the region

ixt <H.

§2.2 The analytical problem

Given this modelling we consider the analytical problem illustrated
schematically ia figure 1; ideal fluid is in motion in the positive x.
direction of the (x.,%2) co-ordinate system witbh uniform low, subsonic
velocity U above a rigid wall at xz = 0. A thin rigid semi-infinite
plate is at x> = H, % > 0 and is parallel to the wall. A line vortex
of strength ¥/2x convects at a constant speed U. at a constant

distance b above the wall.

Vhen visco-thermal effects are neglected the stagnation enthalpy

B(z,t), defined by

B=w+t v2/2 2.1

where w is the specific enthalpy and y is the fluid velocity,will

satisfy the inhomogeneous convected wave equation (Howe,1975);

|0

g —————




[\2 +32 c (D4 W )2 B(x,t) = -divia x ©. @.2)
.)—x:’ )—122 Z;)—t -;215 J

B is employed here as the fundamental acoustic variable. 1In
equation (2.2) @ = curly is the vorticity, c is the speed of sound
and may be assumed to be copstant since the Mach number X = U/c of

the flow satisfies N? <<1. In irrotational flow regions we may take
B = - )/t @.3
where § is a perturbation potential of the flow.

The source term in (2.2) will be non-zero only in vortical flow
regions, i.e. at the vortex core given by x:i = Uc(t-to), %= = h
(where to is a constant) and possibly at the surfaces of the plate
xz> = Hte, where additional vorticity may be iptroduced into the flow
at the leading edge by the passing line vortex. The vorticity of the

convecting line vortex, @:, say is
@i =Y §Cxy + Ucto - Uct) 8§(x2-h) e (2.4a)

where e is a unit vector out of the plane of the paper in figure 1 and
6§ is the Dirac delta function. «. can be expressed as a superposition

of vorticity waves:

@z, t) = fi.‘h X, t,wdo ,

where (2.4b)

@ = (1/2%0)6 (x2-Dexp Ul to-btxi /U Dde .




Henceforth hatted quantities will denote variables in the frequency
domain and the time dependence exp(-iwt) will not be denoted
explicitly. The solution for the stagnation enthalpy, B can be
obtained by superposition of the solution, g say, associated with the

vortical field . of (2.4b). Ve note that
@ x ¥ = (3/218 (x=-hlexpUol to+x: /Uc D , .5)

where n is a unit vector in the positive x» direction of figure 1.

§2.3 Boundary Conditions

The far-field radiated sound will be calculated from equation (2.2)
with the incident vorticity field @ of (2.4b) and appropriate
boundary conditions at the plate and wall. On the rigid wall, x= = 0,
the zero normal velocity condition requires that XQIEXz = 0, since
from (2.3) and (2.4b), ﬁ = iu;. The same condition applied on the
plate, x» > 0, x> = H would lead to singularities in the velocity and
pressure at the plate leading edge, x = (0,H). The singularities
result from the idealization that viscous effects are negligible
whereas in practice viscosity acts to inhibit such singular behbaviour.
The singularities are avoided here by use of Howe's (1981) theory of
displacement thickness waves. In that theory the effect on the
exterior potential flow of large scale boundary layer disturbances
(produced by vorticity generated at the leading edge) is modelled by
fluctuations in the displacement thickness of the boundary layers
emanating from the edge. Greater detail of the theory is given by
Howe (1981) where an idealized model of the boundary layer, sketched

in figure 2 and adopted here, is employed. In the model a boundary

12




layer wave of the form Aexp(iyxi), x = x(w), propagates above a
unifora wall flow of speed V with V ¢ U, U being the speed of the
exterior uniform flow. Howe shows that though a wide range of values
of x(w) are possible for each w, as x§ + 0 (§ is the characteristic
boundary layer thickpess) the variocus modes coalesce and x + w /V. Ve
take

w/Vv 2.7

>
1

and suppose that V = 0.6U, a value suggested by the work of Bull
(1967> and Blake (1970). Thus the boundary condition at control
surfaces defined by x> = H#§, x» > 0, just outside the thin boundary

layers on the plate is

3B/dxz2 = tor@expliyx), x1 > 0, xz = H#O, 2.8
where V(w), a measure of the strength of the disturbances in the
boundary layers, is to be fixed by the Kutta condition that the fluid
velocity is finite at the leading edge. In (2.8) it has been assumed
that the condition can be applied on the surface of the plate.

§ 2.4 The solution for a vortex wave

Introduce the degenerate Prandtl-Glauert transformation (in which N2

is neglected relative to unity)
-~ ~
B(x) = B(x)exp(iwlx:/c?), 2.9

The governing wave equation (2.2) becomes

e wm—




{ 22 432 40 ] @ = -div(@ x Pexptiulxi/ca) , 2.10
)!12 )Xzz c2

where again N2 has been neglected relative to unity. Ve define G(x;y)

as the solution of

[ }2 o432 442 } Glxiy) = -6(z-p, .11

)yr’ 5]22 c®

satisfying

36/Ay. =0, y2=0, Iyl < »,

(2.12)

3/dyz=0, ya=H, y >0,

and the radiation condition that G(x;y) should have cutgoing wave
bebaviour in y space for wlyl/c >> 1, and that as y\ + ® with
lyzl <H, G(x;y) + constant.exp(iwy./c). G(x;y) is calculated in

Appendix A2.
From equations (2.10), (2.11) we find

Fkx) =S}G(x;,)v3§(;) - i&;)V’G(x;;) + G(x; pdiviexy)exp(iwly,/c2)) AV,

v (2.13)
The integration im (2.13) is over the region of fluid V which is

encloeed by a control surface 8. S consists of the rigid wall y= = 0,

a gurface y, = constant = ® for lyal < H, control surfaces at y= = Ht§

\

—— R
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Figure 3. Sketch of the control surfaces of equation (2.14) and the

vortex wave.
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for yy > 0 (around the plate) and a circular arc centred on (0,H) to
give a closed circuit. Application of Green's theorem to the fluid

within S gives from (2.13)

B = :}n. G@p VB - BpVea;p + 6(x;y (wxylexpioly /c?) }dS
)

—j(u x 9.V G(x;y)expliuy:/c2)) 4V , (2.1

v

where (see figure 3) g is the unit normal to S in the direction of the
interior of S. BNoting that vortical fluid enclosed by S is that of
the vorticity wave, we find on using the radiation conditions on
G(x;y) and the conditions (2.12) that

N
‘E(x)= - (G(x;;)_l)B(;) dy: -Yexpliwto) \G(x;;)exp(iuy- {1+NU:/c} /Uc)dy, .

G }ya 2x Byz

Y=+ - £

-y

(2.15)
where continuity in BB/)y: across the plate (c.f. (2.8)) bhas been
used. In this equation the first integrand is evaluated at yz - H,
the second at y2 = h. Ve bave used equation (2.5) for the tera

(@ ¥ v) and the notation

+ .
{f] = £(y\,H40) - £(y,\,B-0). (2.16)

16
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The plate boundary condition (2.8) is substituted in (2.15) and the
Prandtl-Glauert transformation (2.9) reversed to give the actual

enthalpy as
A
B = Buatx + R, .17

where

A

Ba(x) = -yexplin{to-Uxi/c?))| exp({iwy )} (1+NU:/c) /U, G (x; yi.b)dy, ,
2x -—- \yz

2.18)

*
B.(x) = —1Wexp(—lon./c’:fexp(ixpMko.Ic’)lG(x;;)l dy. . (2.19)

L-3

Bu(x) is the direct contribution to the sound field from the
vorticity wave of (2.4b) while B.(x) is due to the disturbed boundary
layers on the plate. The integrals of (2.18), (2.19) are approximated
by use of equation (42.9) of Appendix A2 which is valid for positions

X in the far-field, y in the near-field and gives

Py
(G(x;p) = c(;.o)(f(;)j .

26(x;y)/ y2 = alx,@Ne /Ay (2.20a,b)




for wixl/c > 01y, wlyl/c <K 01, ; is a potential function of an
inflow into the duct (uniform when lyzi<H, y\4® ) and ig discussed in

Appendix Al. a is the function

) )
a(g,w) = —u(no(ulxllc)fi(x.llxl)lia (alxV/2)) , (2.21a)

2c (1+iaHf (@) /xC)

with

f(0) = .5772-1x/2+1n(uH/2xc). (2.21b)

in [0)

(c.f (A2.8),(A2.12) of Appendix A2). Ho, Hi are Hankel functioms of
)]
the first kind. The term involving !l:; is a monopole scattered field

8
and that tnvolving H is a dipole scattered field.

A
(1) To evaluate Ba(x): the direct radiation

Equations (2.20b) and (2.19) give (witbh results (Al.4), (Al1.6) of

Appendix Al)

B = 20} awerptiolto-hxisc)) |, (2.222)

-

where (c.f definition (A4.9) of Appendix A4)

){: exp(iuy: /U.) In(1/ (1-Zo?) ) dy, , (2.22b)

and Zo(y:) is the image of the poiat y:4jb, j=(-1)*, under the
trassformtion (41.2) of Appeadix Al. i.(l) corresponds to the

radiated field calculated by Camnall snd Ffowcs-Villiams (1973), by

18




means of matched asymptotic expansions, for the case when a vartex
exhausts from the duct in the absence of mean flow, its motion due to
images in tbe duct walls. Equation (2.22a) agrees with tbeir results
when account is taken of the differemt vortex motions, save that the
term f(0) in a(x,w) of (2.21) is abeent in their calculation. The
discrepancy appears to arise because of their erromecus exclusion of a
pressure variation which is uniform over the whole duct mouth (c.f.

equation (3.15) of Cannell and Ffowcs-Villiame (1973)).
(i1) To evaluate ’ﬁ.(x): the dieplacement wave contibution
Beglecting W? relative to unity, we find from (2.19), (2.20a) that

~
B.(x)

)
—lav(w)exp(-1uMx, Ic)a(x,u)Jexp(ixy‘ )[;l_ dy.

[

]

1oV (wlerp(-1ullix,/cla(x,w) | § dlexplixy.)) 4§} , (2.23)

S ixdi va™

where now the integration variable is the potential §. The

displacement waves must decay as y: + @ due to disgipation by heat and
viscosity, or breakdown into turbulence, and this is modelled bere by
allowing ¢ a small positive imagiaary part (for ©>0) ia the evaluation

of the iategral of (2.23) to give

i.(x) = -(ovm)lx)cxp(-iulxoIc)c(;.u)\fc!p(lxy;)d; .

11
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Comparison with (A4.5) of Appendix Ad leads to the result

i.(x) = ~{oV()BE/yx)expl-iulix, /c)alx,wexpl L{(-ixH/)] . (2.20)

where

L(x) = 1alT(x)] -xlpx +x , (2.25)
and T is the gamma function (Gradshteyn and Ryzhik 1980, p333).

The calculation of Appendix A4 fixes ¥ (w) by application of the
Kutta condition that the fluid velocity remain finite at the plate

leading edge and gives (c.f.equation (A4.10))

Y = !(l/2:)e!p(iuto-l.(~1xﬂ/x)l“/llll< . (2.26)
On substitution in (2.24) we find

B@ = -/ (y/20fa(z,exptiol to-Kx: /o) @.2m

which i8 valid in the far-field, wix!/c >>1. Comparison with (2.22)

reveals that
A A Fd A
B(x) = Ba(x) ¢+ Bu(x) = (1-¥/0.)Ba(x) . (2.28)

The term contaiaing V arises from the displacement waves 8o their

presesce has the effect of reducing tbe level of the radiated sound by
a factor of (1-¥/U.) which for a characteristic value of ¥ = 0.6U and
U, = U 1e 4/10. The reduction is greater if U, ( U and for V = U. no

sousd is radiated, as if the plate were abeent. It is interesting to




compare this result with those of Howe (1976) for the case when a line
vortex convects past the trailing edge of a thin semi-infinite rigid
plate in a low subsonic grazing mean flow. Application of the
trailing edge Kutta condition required vorticity to be shed from the
edge and to convect at the mean flow velocity in a vortex sheet wake
downstream from the edge. Howe found that no sound was radiated if

the convection velocity of the vortex and shed vorticity were equal.

§2.95 The solution for a convected line vortex upstream disturbance

The stagnation enthalpy B(x,t) for the line vortex of (2.4a) is
obtained by integration of B(x) over w. Ve suppose that the duct is
extremely wide on the hydrodymamic length scale U/w, in which case the
integral H,oi (2.26b) is approximated by equation (A4.14) of
Appendix A4. Ve find from (2.22), (2.28) that

L] e

B(x,t)=(1-V/U.) (¥/4x) {HU .} (1-1) a(x.u)ezp(—lu?)(ex‘p(-uﬂllﬂg)1 do tc.c

- 0™ x-

2.29)

where
t = t-tothx/c, 2.30
and

I. = 11-h/HI, X- = (1+h/H).

The difference in the integrand is to be taken between X=I., c.c

desotes the complex conjugate of tbe preceding expression and we have




used o*(x,0)=a(x,-w), K‘(u)=’{(°u) (c.£.(2.21) and (2.22b)). An

asterisk denotes the complex conjugate.
(1) Far-field outside the duct
On substitytion for a(x,w) from (2.21) into (2.29) we obtain

B(x,t) = (1-V/U)tN*{1+cos8) | il exp(-isY) {exp(-sX.)-exp(-sX-)}]dstc.c.

A4x(B/0.) {(xi x| /H)™ —— (1+iK£(sU./H) /x)

2.3

The asymptotic form of the Hankel functions has been used (Abramowitz

and Stegun 1964,p364). In (2.31) we have introduced M., 6 and ¥;

K = Uc/c, 6 = arcos(x.:/ixg!) , Y = U.(tl/H, (2.32a)

where since N* << 1

{t] = t-to-1xi/c +Mx1/c = t-to-Ixl/c{ltdcos(B)). (2.32b)

f is defined by (2.21b). Owing to the exponential decay, the major
contribution to the integral in (2.31) is from s <{ 1/X., where Il. is
the minimum distance o—f the vortex from the plate as a fraction of the
duct beight. Correct to neglect of terms of order (Ns)Z1ln(Ms) we find
after some calculation and use of Gradshteyn and Ryzhik (1980, p573)
that

B(xz,t) = An{F(Y,L)-F(1,1-)} ,

(2.33)

An = (1-V/0.) (¥/2x) "™ {1+coeB) .

{xlxl /HY*(H/U.)

L
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Here

Ft,x) = t “Ned fxg(t,x)-tln O /2x{x2+{2)")) , (2.34a)
X242 ; ;t[ x2+t2 ]
and
gix,t) = n/2 - arcos(x/{xZ+t2)%"). (2.34D)

Since Y and X. are non-dimensional variables, so is F in (2.33) and
Ar is of order uU, where u is the characteristic particle velocity of
tbhe vortex. The parameter Y = U.(t]/H is the retarded streamwise
position of the vortex as a fraction of the duct height. The term
F(Y,1.) arises from diffraction by the plate and dominates the term
F(Y,I-) (due to the presence of the wall at x> = 0) when the vortex
passes close to the plate. B/As describes the dependence of the far-
field enthalpy on the retarded vortex positon. As Yt + @ and the
vortex is far from the leading edge the enthalpy decays with

B/An = (4h/H)/1Y13. Since (c.f(2.34a))
F(t,x) = {(tQA+K./x)-K.[141n(2xx2/K.)1/x)}/x2 , t << x,

when U-{t} << IH~hi and the vortex approaches its mipimum distance

from the plate edge, B/A= becomes small with
B/An = {(OCU.[t)/1B-h1)4000D)}/11-b/HI.

B/An will bave a maximum/minimum when the vortex is respectively
downstream/upaiream of the plate edge and for M << 1, I1-h/Hi <C 1
tbis occurs at Y = #11-h/Hi where B/Ar = #1/211-h/H!. Note that the
assumption that the vortex convects approximately at the mean flow

velocity relies on the assumption ¥/H, ¥y/!H-hl << U, so that the self-

3




induced motion of the vortex is pegligible. Consequently the results

presented here are not valid as h+40 for fixed ¥ and U.

The characteristics of B/Asx discussed above are evident in
figure 4(a,b) where respectively K. = .1, .001 and B/Ar is plotted as
a function of Y = Yclt}/H, IYI<1l, for various values of h/H.
Figure 4(a) shows that it mekes little difference whether the vortex
passes abave or below the plate though the amplitude IB/Asl is
slightly greater in the former case. Figure 4(b) indicates that for
N. << 1, 1Bl does pot depend on whether the retarded vartex position
is upstream or downstream of the duct mouth. B/As is plotted, again
as a function of Y in figure 5 for fixed b/H = .9 and
M. = .001, .1, .2. Varying the Mach number has little effect save for

Y in the region of -11-h/H}.

(i) The far-field within the duct

In the far-field within the duct a(x,w) is given by (42.36) of
Appendix A2 and substitution for a in (2.29), neglect of terms of
order (wH/c)Z?1ln(wH/c) leads to the following expressian for B(,t);

B(x.t)“z Ao (P (Y, X.)-P(Y, X)) ,
(2.35)
Ao = (1~V/U.)(Y/2x) (x/2)*U./B ,
where

P(t,x) = P.(t,x)-sgn(t)P-(t, x) ,

Pe(t,x) = qe(t, x4 lcd(q.(t,x)[ln(l‘lsx(x2+t3)“)tg(t,x)]),

xdt

24




Fig. 4a

Figure 4.
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B/An of (2.33) as a function of U.{t)l/H. h/H is 8s

indicated op each curve and (a) N. = .1; (b) .001.
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h/H = 09

Figure 5. B/An of (2.33) plotted against U.Lt}/H for h/H =.9 and

X = .001, .1, .2 as indicated ou each curve.
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Qe (t,3) = [ ({x2+t2)%1x)/ (x2+t3} ] , (2.36a-c)

(c.f. Gradsbteyn and Ryzhik 1980, p484 and p574). g is definmed by
(2.34b). Examination of (2.35) and (2.36) shows that when Y is large
and negative (the vortex is far upstream) the field in the duct is
small with B = Ap2/1YI® while when the vortex is far downstream of
the edge B = - Ao2(b/H)/IYI®/Z, h<H and B = - A02/1Y(3/2, h > H. V¥hen
the vortex approaches its minimum distance from the plate,

Ucltl/B << 1B-hi, we find for . << 1

B/Ao = 2( {1/11-h/HI*)}-{1/(1+h/H)*] ,

and B/Ap has a maximum. This cauv be seen in figure 6 which shaws
B/Ao as a function of U.[(t]1/H for K. =.1 and various values of h/H.

As for the radiated far-field, IBl is slightly greater when the vortex
passes above ratber than below the plate. The influence of K. on B/ho

is shown in figure 7 where h/H=.9 and K. = .01,.1,.2.

Ip figure 8 the dependence of the radiated and duct far-field
stagnation enthalpies on U.(t]1/H (respectively B/As of (2.33) and B/Ao
of (2.35)) is compared. Two values of h/H, .5 and .75, are shown and

E. = .1. The difference in the two is most apparent at Uc[t)/H = |1-b/HI.

§€2.6 Harmonic Gust

An incompressible velocity perturbation u = (uy,uz) of a convected

two dimensional gust is

— —————

-y
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Figure 6.
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B/Ao of (2.35) as a function of U.(t}/R with X = .1 and

values of b/H as indicated on each curve.
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Comparison of B/Ax of (2.33) (solid curves) and B/do of

(2.35) (dashed curves) with N.=.1 and bh/H =

indicated on each curve.
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u = CKY/EK) Kz K exp (1K (24 -Uc t) +iKaxa), (2.37)

where C(L) i & function of the wave-pumber K = (KX,,k2). In the co~
ordisate uystem of figure 1 the vorticity of the gust is ve (g is a

uait vector out of the planve of the paper) and

-
]

{CD (K 2+K2?) /Ky Jexp (4K (X0 -Uc t) 41Kax2) |, (2.38)

[C (X, 24K22) /K0 )

e N

fexp(ﬂl. I +iK2X2)8 (0 ~Uct-11) 8 (x2-X2)dX dXo.

—- (2.3

[}

The far-field stagnation enthalpy produced by the interaction of the
guet with tbe edge (0,H) of the plate can be calculated by use of the

results of §2.4 if we set

b=Xz, to=-I1,/0., (2.40)
and

¥ = {CK)(Ky24K22) /Ky Jexp UKL X, +1K2X2)dXLdX ;. (2.4

B(x> is found by integration of tbe stagnation enthalpy for the line
vortex case of 82.4 over the variables I,, Xz as in (2.39). In this

way we obtain with (2.31)

B(x) = CUD(1-V/0. I (1-isgn(K, ))a(x, K\ U. Jexp(-K, U [ t+hx,/c))

2x 3 S

. Aexp(ikzfl)-exp(-tK 1)) .

2.42)




Regult (2.31), used to derive (2.45), i valid for short vortex waves.
Thus we require IK,HI >>1 and peglect the final ters im the curly

brackets of (2.45).

(1) Outside the duct, I1ZIM1/IKK

From (2.21) with the asymptotic form of the Hankel functions and

(2.42) we find

B(x) = 1C(E){1-¥/U.) (1+cosO) A *sgn (K Jexp (1K H-1K. 0. ( t)), (2.43)

2a{ni I /B 1+ R Bf (K1 0. ) /x)

where (t} is defined by (2.32) with to = 0.

(11) Imside the duct, IxI>»1/1K/ N

From (2.45), (A2.36) of Appendix A2 we find for the far-field

enthalpy

B(g) = C(D(1-¥/0.) (1-1sgn(Ki))exp(ikB-1K\U [ t)) , 2.40)

2e UK )1 44K L BE (K4 UL ) /x)

(1]
o

where (t) is defined by (2.32b) with to = 0 and 0

82.7 Acoustic energy flux

The flux of acoustic emergy (the Blokhintzev definmition, c.f.

Blokhiatzev 1946) through a surface § is T1 say, where

23




laf =f(pr + 0p'B).n dS . (2.45)
8

p, 1 =(U,0) are respectively the mean density and velocity; the
perturbation density, velocity and stagnation enthalpy are p*, y and
B. @& is a unit norsa]l to the surface S. The adiabatic relatjion
between density and pressure and the linearized Bernoulli equation are

used in (2.45) to give, neglecting W= relative to unity,

TT = p{B{y + B{/c3).p dS . (2.46)

s
(1) Line vortex

The power flux through the surface Se of figure 9, a circular arc

centred oo the origio with radius R = igi-®, is [l say where

Me = ij(Vn + N(cos6)B/c)ixide , 2.4

°o

and 0o = arsin(H/1x1)=0. v, is the fluid perturbation velocity in the
radial direction and is calculated from Bernoulli's equation;

dva/¥t = BN . .48
(2.32) and expression (2.33) for B give,where we pow set U. = U,

dv. /3t = (1/c(14Mcoa(8)))IOBAL . (2.49)

Using (2.49) in (2.47) and again neglecting N? relative to unity, we

find
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TTh = (p/ci[B’lxl dae ,
o

and with (2.33) this becomes with U. = U,
Tin/E = (3(1-V/U)2N2/2)(FULt]1/H,11-h/HI)-F(UL t]1/H,1+h/H)12 , (2.50)

where

B = p{Y/2x)2/(HB/U) . (2.51)

The 6 dependence of (t) has been neglected in obtaining (2.50) where
now ftl= t-to-1xl/c. The flux through the surface S at x. = ®, x=(H,

(see figure 9) is Mo say, and from (2.46), (2.35) we obtain for N2<1
Mo/W = (/2> (1-V/UYZW P(ULt)/H, i1-h/HI)-P(UL t1/B, 1+h/H)12, (2.52)
where [t] = t-to-Ixl/c .

In figures 10, 11, and 12 the power fluxes, normalised by ¥ of
(2.51) are plotted in dB against ULt)/H, 1U(t)/Hi<1, and V/U = 0.6.
TTo and TTe are compared in figure 10(a-c) where N =.1 and
(a) 11-b/HI = .25; (b) .1; (c) .01. Each curve has a singular point
because TIw/F = 0 where B/An of (2.36) is zero and logio(TTe/M)9 -,
Similarly TTo/N = 0 when B/Ao of (2.35) is zero. Over the range of
Ul t) shown in the figure we see that the duct power flux is greater
than that radiated except for a period in [t} > O which contains the
poiat TTo = 0 (e.g. for b/H =1.25 in figure 10(a), this range is

.31 C ULt)/H < .75). The difference in the results for the vortex
passing above and below the plate (if there is any) is indicated in

each of the plots.
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Figure 10. The normalised power fluxes Mr/E, TT1o/¥ of (2.50) and
(2.52) respectively, plotted in dB against U.lt1/H with

¥/U = .6 and X = .1: (a) 11-h/HI=.25; (B).1; (c) .01,

ARETM(UMHA) 87311 -37-




Ultl/H

FIG. 10 (b)

-38-
ARETM(UHA) 87S1%




M=z01,V/U = 6

n/H = V.01

0

10logyp (Tip/ N}

-20

1010919 TR/ N)

o
ulti/H

FI1G. 10 (c)

-39 -
ARE TM (UHA) 87511




b 4
"
<
~
(=4
"
L

20—

| l
L i | 1 | i )
5 0-0 s
Ult)/H

Figure 11. 10logio(Na/M) of (2.50) as a function of U.[t]/B with

V/U = .6, K=.1 . h/H is indicated on each curve.
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Ult)/n

1010g10(TTan/I) (s0lid curves) and 10logio(T1o/K) (dashed
curves) plotted against Uc.(t)/H with V/U = .6 and K = ,01,

.1, .2, as indicated on each curve.
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Figure 11 shows TTa/N for different values of b/H and again N-=.1.
The peak of each curve increases as the minimum distance of the vortex
from the plate (H-hi is decreased. Though the functions F and P
(respectively of (2.34), (2.36)), appearing ip the radiated and duct
power fluxes have a Nach nusber dependence the predominant influence
is that TTe/N varies as N* whereas Tio/N is proportional to N. This
is illustrated in figure 12 where TIw/¥ (solid lines) and TTo/K
(dashed lines) are plotted for h/H = .9 and X = .01, .1, .2 as

indicated on each curve.
(i1) Harmonic gust \

TTwm, TTo, defined in the preceding section, are respectively the y
power radiated to the far-field outside the duct and through the duct.
In a calculation similar to that described between (2.45) and (2.50)
with B now given by (2.43), (2.44) (additionally taking real parts of

functions and averaging over a wave period 2x/K.U ) the following are

obtained:
TTe = 3pHIC(K)12(1~-V/U)2X R (2.53)
16cx?| 141K NHECK . D) /1 2
Mo = pHICKK)12{1-W/U)2 . (2.54)
2cx>K,HI 144K MHE (K U) /12
and

Tiv = Te/lMo = 3K, 1H/8 ,

(2.55)

3lwili/8c .

where o = K\U is the radian gust frequency.
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§3 Plane wave radiation from the duct

§3.1 The far-field potential

The radiation of a plane wave, ¢,exp(~iut), from the semi-infinite
duct formed by the plate and wall is now discussed (see figure 13).

The incident plane wave is given by

1 = foexp(-ivkox 1/{1-1D) , ko = w/c , 3.1)

and propagates upstream from within the duct. go is a constant and

flow quantities, such as N, p and c are as described in §2.

The total perturbation potential, gexp(-iwt) say, is the solution of
the convected wave equation ((2.2) with the right hand side replaced

by zero) which satisfies the boundary conditions

V(o)exp(iyx:) , x1 > 0, x> = Hi0,
35/3xz = @
0, xz2 =0, Ix)| (@,
and

§ -+ constant.explikol x|/ (1+Ncos(8))/1gi™* , Igl + @, (3.3)

0 = arcos(x,/I1xl),

for x outside the duct. ¢ and 3!/\:: must also be continuous on
Xy < 0, x2 = H. The boundary conditions in (3.2) are the same as

those for the vortex which are dicussed in §2.2. The Prandtl-Glauert
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transform of (2.9) is ewployed again with 7 denoting the transform of
~
§ and ¢, that of ¢, where

~
#1 = fpoexp(-ikox:) . (3.4)

Vith the Green's function of equation (2.11) we find on application of
the Divergence theorem to the fluid in the region V sketched in

figure 3 that

Y = -f( GX; PV - $(Ve(x; }. nds, (3.5)

s

where S, the boundary of V is as described in 82.3 and sketched in
figure 3. The radiation conditions satisfied by G and § ensure that
the portion of the surface integral over Se, the circular part of S,
is zero and that only the component 7‘ of 7 contributes to the
integral over tke surface y, = ®, lyz! ( H. On applying the condition

(3.2) we obtain with (A2.4) of Appendix A2

g(x) = —v(u)‘[tc(x;x)_]fexp(ixy.) dy, - fo21koHA(x,w). (3.6)

o

The notation ltf is explained by (2.6) and G(x;y) -+ A(x,w)explikoy:),
yv 4 ® defines A, which is calculated in Appendix A2. The integral on
the right hand side of (3.6) arises from the presence of displacement
waves on the plate boundary layers. Ve assume that since the
displacement waves must decay aor become incoberent as they propagate
downstream the major contribution to tbe integral comes from the

region yi << 1/y, and the integral is evaluated by use of the

us




approximation (2.20a), lci = af}lt which is valid for Iyl within ap
acoustic wavelength of the plate edge, 1x! in the far-field. On the
assumption of short displacement waves, xH >> 1, a further
approximation for [;l given by (41.11) can be used in (3.6) and with
result (2.24) we find on reverting to the actual potential ¢
(c.£.(2.9))

$(x) = —exp-ikoMxy) fa(X, @)V () (H/1x1)1*(1-1) + $o2ikoHBA(X, W) .

=

3.7

J(w) is determined by the Kutta condition in Appendix A4, (A4.16) and
a, A are given respectively in equations (A2.12), (A2.13) of
Appendix A2 for x in the far-field outside the duct and by (A2.17),

(A2.14) when X is far downstream within the duct.
Substitution for y(w) gives

(X)) = ~KoHfoexp(-ikoMx)) { ((1-R+N(14RYla(x,0)/x) + 2iA(x,w)}

(3.8

R is a reflection coefficient when § = §., the perturbation potential

in the absence of displacement waves and is defined by
FalZ) + F4(X) + $.(x) , xv + @ Ixa2l CH,
3.9

$-(X) = foRexp(ikox,/{14M)) .

R 18 determined from (3.7) by setting V(w) = 0 and use of results

(A2.14), (A2.15) of Appendix A2. Then comparison with (3.9) gives

R




R =- 1 ~igHf (w)/nc R (3.10

1 +iuBf(w)/nc

where f(w) is defined in (2.21b).

(1) The radiated field

As in (2.7) we set x = w/V. Results (A2.8a,b), (A2.12), (A2.13) of

Appendix A2, in which the asymptotic form of the Hankel functions

(Abramowitz and Stegun 1964, p364) are substituted, give with (3.8)

and (3.10) for wixt/c 4+ ®

g (D)exp(-iwt)

4 —foll-1) (ull/xc)"l 1- ({wHf (W) cosB/xc) te {(1tcos) ]exp(-iu[ th,

Uxt/H)™ {1+iHf (@) /xc]
3.11)
€ = (V/U)l[luunum)/-c . 3.12)
1+iwHf (@) /xC

where [t) = t-I1x!1/{c(1+KcosO)), correct to neglect of terms of order
N* relative to unity. The far-field pressure, pexp(-iwt), is found
from the linearized Bernoulli equation which gives, again neglecting

N? relative to unity, p/p = 1w(l-Ncosf)y.

The intensity of the radiated sound, averaged over a wave period

2x/w, is 1pl*/2pc and from (3.11) we find

47
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Ipi2 = llp.l’] 201-D2koH D , wixi/c M 1, (3.13)

2pc 2pc (xl gt 78)

where Dn is a directivity factor defined by

Dr = (1-!::098)2' 1- ({0oHf (@) (cosB} /xc) +e (1+cosB) % ,

1 + iolf(w)/xc

(3.1
and
ip.12/2pc = plalfol/(1-M}*/2c (3.15)
is the intemsity of the incident wave g. of (3.1). Ip the long
wavelength limit we find, neglecting of terms of order (wH/c)?
relative to unity
D = (1-Mcos®)={ 1- (1+cosB) [ koB- (V/U)N(2-koH{(3+cosB))]) , (3.16)

wH/c <<1.

The term involving V/U i{n (3.15) is the change in the far-field
intensity from that of the 'no displacement wave case' and indicates
that for long sound wavelength the intemsity is increased by an amount

which is proportional to VN/U.

The directivity factor Dm is plotted against 8° in figure 14 for
various values of koH, V/U = .6 and (a) N = .1; (b) N= .01. The
mximm ig at 0 = 180°, upstream of the duct on the well at x2 = 0,
when D = (141D02. The minimum attained by D depends on koH,
decreases as kol increases and occurs for koH ¢ 1 at 0°. The results

presented here are strictly valid only for low frequencies, certainsly
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Figure 14. The directivity factor of the far-fiald pressure, Dn of
(3.16), as a function of 6, with ¥/U = .6 and (&) N=.1;

(d) .01. The value of kol is indicated oD each curve.
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below the cut-off of transverse duct modes, i.e koH < x/2, but results
are shown for greater values of koH. The figure reveals that De can
become very small for values of koH > 1 and 8 close to 0°. Figure
14(b) shows tbat between the upstream and downstream directions there

is a difference of 4 dB at koH = .5.

(11) The duct field

The far-field potential within the duct can be expressed as

F(X) = F.(X) + ga(X) t Fu(Xx) , (3.17)

where ¢.(x) is a reflected wave arising from the presence of

displacement waves obn the plate and fa(x) is the reflected field in

their absence given by (3.9), (3.10). The total reflected field,

#-(X)+§r(X) cab be written as a single reflected wave with reflection

coefficient E;

1. (R +96(X) = goR explikoxl/(140)) , (3.18)

and from (3.8)-(3.10)

R=- {1- (Ukoff(w)/x) + 2¢ ). (3.19)

{1+ ik Hf (W) /)

In the absence of displacement waves ¢ = 0 and then in the long
wavelength limit R+ -1. In terms of pressure amplitudes with p. that
of the incident wave and p. that of the reflected field of (3.18) we

find

S\




Ipel/Ztpal = ((1-KD/ L4 IRI . 3.20)

Experiments have been conducted at the Institute of Sound and
Vibration Research of Southampton university to measure the field
reflected at the mouth of an open pipe which has a low mean flow Nach
number inflow and white noise excitation within the pipe, downstream
of the mouth (Davies 1987). Comparison with the present tbeory is
possible only on a qualitative level since in the experiments the
geometry is that of a circular pipe, rather than a two-dimensional
duct; the inflow is produced by suction within the pipe and is
consequently non~uniform around the mouth. Also the theory assumes
that the flow does not separate at the duct mouth whereas for a sharp
pipe entry the experimental flow consisted of a shear layer of
thickness around .2a (a is the pipe radius). A bell mouthed pipe
entry, alsc examined in the experiments, had smooth entry flow but its
pipe wall (of radius of order a at the mouth) does not resemble the
thin wall discussed bhere. HNevertheless in the latter case the
peasurements of the ratio of equation (3.20), normalized by its no-
flow value are curve fitted by [(1-K)/(1+)}]-2. which Davies points
out is g eater than the value [ (1-N)/(1+M)) which a potential flow
solution would predict. The presence of coupled instability waves in
the pipe boundary layers is suggested as the cause of the enbanced
reflected wave amplitude. This explanation is in accord with the

present analysis which from ¢3.12), (3.19), (3.20) gives the ratio as

A-I0142(7/ 0 = [(1-0D/7 14DV

1+M

YA

won



(X* and {koH)Z are neglected relative to unity). This prediction of
the ratio is, for V/U = .6, much greater than that of the experiment
but shows that flow/acoustic interaction at the duct mouth can explain

the increase in the reflected field.

3.2 Acoustic energy

Equation (2.45) gives the instantaneous acoustic emergy flux through
a surface S. Bere we discuss the time-averaged, i.e. averaged aver a
wave period 2x/w, power flux away from the plate leading edge. The
flow of acoustic energy through the surface S, sketched in figure 9
and defined by x:» = L >> c/w, Ix2! ( H, is TTo. The perturbation
field at S is given by equations (3.17)-(3.19). Restoring the time

factor exp(-iot), taking real parts of functions and averaging, yields

TTo = - M. (1-1RI?), 3.2

where TT; is the power flux of the incident wave ¢, of (3.1) and

TT. = polfolZkoB/2 . (3.22)

Calculation of IRIZ? from (3.19) correct to second order in koH shaws

that

Tlo/Tly = -2koH{ 1-koH - 2(V/1YK 1-2koH) /koll ) |, koH << 1. (3.23)

The time-averaged flux tbrough Sk of figure 9 (a circular arc centred

on the origin with koixl >> 1) Tie say, is found in a similar manner

using (3.11) and (3.12);




TTa/TT, = 2koH { 114612 +tle-ikoBf (@) /mIZ2/2 ) , (3.24)

I 1 4+ ikoHf (@) /%12

where € is defined by (3.12) and £ by (2.21b). In the limit koH 4 0,

neglecting N= relative to unity, this becomes

MTe/TH, 3 2koH { 1-koH +2M(V/U) ) . (3.25)

In the long wavelength limit the net flux of acoustic energy away from

the plate edge is from (3.23) and (3.25)

TTa + TTo = TT,AK(V/UD{ 1-koH } , koH << 1. (3.26)

Acoustic energy is not conserved due to the presence aof displacement
waves on the plate boundary layers and (3.26) shows that for low
frequencies the total flux away from the plate is positive; sound

energy is produced by the flow acoustic/interaction at the plate edge.

In figure 15 the radiated and duct energy fluxes normalized by TT,
and respectively of (3.21), (3.24), are plotted in dB against koH for
V/U = .6. Also shown is a transmission factor Tly = TIe/ITTol, which
is the radiated power as a fraction of the duct power flux. Though
the results are valid only for koH << n/2 a much greater range is
shown in figure 15(a) where X = .1. A more detailed picture of these
results for kol ¢ 1 is given in figure 15(b). Singular points in the
curves for Tl1p and TT+ are evident at koB = .1. This is where
IRIZ = 1 in (3.21) and TIo = 0. For koH < .1 the pet duct energy

flux is positive in the direction of the reflected field, i.e. in the
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direction of the inflow, while for XoH > .1 the net flux is in the
incident wave direction. The corresponding results for X = .01 are
shows in figure 15(c). Figure 16 shows that the met flux of acoustic
energy away from the plate edge, TTe + Tlo, narmalized by IT, is

positive as indicated by (3.26).

FIG. 16

Figure 16. The net normalized power flux away from the duct mouth
(Ma+iTo)/TTy, as a function of kol with V/U = .6 and

K= .1, .01 as indicated on each curve.
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Conlusions

The production of sound when a weak line vortex is convected into a
semi-infinite two-dimensional duct by a low Nach number mean flow has
been examined by use of a low-frequency Green's function. Howe's
theory of displacement thickness fluctuations was applied to model the
effect on the radiated sound field of disturbances which are produced
by the interaction of the vortex with tbe leading edge of the duct
wall and wbich propagate in the thin boundary layers emanating from
the edge. The strength of the disturbances is fixed by the Kutta
condition applied at the leading edge and it is found that the
presence of displacement waves reduces the radiated pressure field by
a factor cf about 4/10 compared to the case in which their presence is

ignored.

The duct width, H, is assumed small relative to the characteristic
acoustic wavelength d/N, where d is a vorticity length scale and X is
the flow Nach number. Analytical expressions are obtained for the
far-field, botdh within and outside the duct. From this solution we
find the radiated field produced when a frozen harmonic gust is

convected by the duct inflow.

The instantaneous power fluxes of the duct and radiated fields,
produced by the interaction of the line vortex with the duct mouth,
are compared. We find that the forser is of order Y2N whereas the
radiated power flux, an order of magnitude smaller, is proportiomal to

Y207 (y/2x is the vortex strength).

The radiation of a plane wave from within tbe duct has also been
examined. The net flux of acoustic energy away from the duct mouth is
found to be positive due to a production of acoustic energy 'by the

displacesent waves.

e e —
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captions

1. Schematic illustration of convection of a line vortex by a
unifors mean flow into a semi-infinite duct.

2. Sketch of the idealized boundary layer model with a
displacement wave.

3. Sketch of the control surfaces of equation (2.14) and the
vortex wave.

4. B/Ar of (2.33) as a function of U.It]1/H. bh/H is as
indicated on each curve and (a) M. = .1; (b) .001.

5. B/Ar of (2.33) plotted against U.ltl/H for h/H =.9 and
A = .001, .1, .2 as indicated on each curve.

6. B/Ao of (2.35) as a function of U.{t)/H with . = .1 and
values of h/H as indicated on each curve.

7. B/Ao 0f(2.35) plotted against Uc.{tl/H for h/H = .9 and
X = .01, .1, .2

8. Comparison of B/An of (2.33) (solid curves) and B/Ao of
(2.35) (dashed curves) with X.=.1 and h/H = .5, .75 as
indicated on each curve.

9. [Illustration of the surfaces in the far-field through which
the radiated and duct power fluxes are calculated.

10. The normalised power fluxes TTm/§, T1o/N of (2.50) and

(2.52) respectively, plotted in dB against U.{t]1/H with

V/U = .6 and X = .1: (a) 11-h/HBI=.25; (b).1;

b1
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

11.

12.

13.

14.

15.

16.

17.

18.

19.

(c) .01.

10log10(TIn/H) of (2.50) as a function of U.[t1/H with

V/U = .6, N=.1 . h/H is indicated on each curve.
1010810 (TTr/N) (s0lid curves) and 10logio(T1o/K) (dasbed
curves) plotted against Uc.[t)/H with V/U = .6 and N = .01,
.1, .2, as indicated on each curve.

Radiation of a plane wave from the duct.

The directivity factor of the far-field pressure, D of
(3.16), as a function of O, with V/U = .6 and (a) N=.1;
(b) .01. The value of koH is indicated on each curve.
The normalized radiated and duct power fluxes, Tiw and
TTo of (3.21), (3.24) respectively, plotted in dB
against k-H with V/U = .6 and (a) N = .1, koH ¢ 4.;

() XK= .1, koH € 1.; (c) X = .01, koH ¢ 1.

The net normalized power flux away from the duct mouth
(TTe+TTe)/Ti,, as a function of koH with V/0 = .6 and

N= .1, .01 as indicated on each curve.

The transformation Z of equation (Al.1).

Sketch of the regions 1-3 around the duct.

Sketch of the flow of equation (A3.4)
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Appendix Al Calculation of a flow trapsforsation and §

The Green's function of (2.11) of the main text, G(x;y¥) is
calculated in Appendix A2 for x in the far-field. Then when y is in
the near-field of the duct mouth (BB' of figure 17) G(x;y)
approximates the potential of am incompressible flow into the duct.
Thus the potentiall§ and stream function ;'of the potential flow into
the duct which bas a uniform velocity of unity in the positive x,
direction at xv = @, Ix2! < H, are required in the calculation of the

far-field stagnation enthalpy and are discussed below.

The mapping of the z plane (z=x.:+jx> and j is the complex imaginary
number (-1)*) consisting of two semi-infinite planes defined by x2 =
tH, xv > 0, in the (x:,x2) co-ordinate system in figure 17 to the
upper half of the Z plane, also sketched in the figure, is found from

the Schwarz-Christoffel transformation (Niloe-Thompson 1968,§10.2);
dz/dZ = K<Z2-1>/Z , (A1.1)
which gives oo integration (with the complex constant K and that of
the integration chosen so that the points (0, tH) are mapped to (#1,0)
in the Z plane)
z = (H/x>{ 22 -1 -1n(Z3) +jnx ) . (A1.2)
A uniform flow of velocity 1 at x.», Ix2I1< B, is equivalent to a sink

at the origin of input 2H taken over an angle x and therefore of

strength 20/x. The complex potential of this flow is w and
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w = -Q2H/x)1n(Z) +jH , (A1.3)
and re-arrangement gives
Z = +jexp(-xw/2H). (AY.4)
Substitution for Z in (A1.2) yields
z = {B/x} (-1 + exp(-xw/H) + wn/H} . (A1.5)
The fluid velocity u = (u,v> is found from u-jv = dw/dz and
dw/dz = 1/{1 +exp(-aw/H)) . (A1.6)
Equating real and imaginary parts in (A1.5) with w = §+jw, we find

@/0 -1 + Gr/H) - cos(xP/Hexp-xp/B) ) ,

n

b 3}

(A1.7)

1z = (/0 Pr/B) 4 sincof/Hexp-xg/) )

Approxi ; l‘_.;

On xi 2 0, x> = 1H, ? is constant and g= tH. As x.9® with
Ix2l ¢ B examination of (Al.7) shows that 5 4 xy. As ixgl 3 o gutside

the duct region of figure Al we find

;—) - (W/x) laGigin/H) . (A1.8)

Expansion of the exponential factors in (A1.7) for o <{ HB/®m with

x> = H =q leads to

(1)




-————e—

X = (H/2x)(i§/ﬂ)2( 1+ 0(g§/u)) , 8 KH/x . A1

Thus

§ = -(+{(2Hx./x)") , x> = H0, O < x, << H/w , (A1.10)

where the upper/lower signs correspond. The disconinuity in @ across

the surface xz = H, x\ > 0, is approximated by

“2(2Hx /)™, X (K H/x . (A1.11D)

13

( ;1

Appendix A2, Green's fupction calculation
Define G(x;y) as the solution of

eda 4 3F 4w Gy = 6P a2. 1)

)YIz By:2 c2
which satisfies the boundary conditions
0, y2 = 0, Vysl C @, (A2.2)
\
dG(x;y)/}yz =

0, y= = B. Yy >0 ’ (A2.3)

and the radiation condition that for lwy/cl >> 0(1), G(x;ylexp(-iwt)

should have incoming wave properties with

G(x;y) 3 AexpUuwy:/c) , y1 4 @, ly2l < H. (A2.4)

b




In 3 space G(x;y) reprcsents a source with position x and will be
calculated for Ix! ip the far-field. The boundary condition (A2.2)
will be satisfied by placing an image of the semi-infinite plane at y=
= -H, y» > 0, and an image source at x* = (x),-x2) and requiring
instead that‘\G(x;y)/)yz = 0 on the image plane. The flow-field
around the duct formed by the two planes is divided into three regions
(see figure 18). In region 1, wlyl/c << 01}, while wy./c > O(1),
ty2l < H in region 2 and ip region 3 lwy/cl > 0(1). Ve consider both

the case of g in the far-field outside the duct and within the duct.
(i) x in the far-field outside the duct
Region 3 : The function G(z;y) will take the form
GX; ) 4 Ga(x3y) + Geix; 1)
where for fwx/cl >>1

0] [O)
(i74)( Ho(wig-gt/c) + Holwlx*-yl/c)

G. x;y)

and (A2.6)

13

(4
Gg (x; 1 8 Ho(wiyl/c)
{(»
Ho(x) is a Hankel function of the first kind and § is an unknown
function of x. The function Gi(x;y) is tbe solution of (A2.1) when
only a plane at yz = 0 is present while Gg(X;y) arises from the
presence of the plates and is the far-field produced by the

scattering of Gi(Z;3) by the plate edges. As lwg/cl + 0,
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G.(x;3) » a + by, ,
and (A2.7)
Ge(x;p) + 128/x) L ilneiyi/c) + x(.5772-1102)/2) ,

where
a = {i/2YHo(wlixl/c), b = {iox./2cigitli(wixl/c) , (A2.8a,b)
(c.f.Abramowitz and Stegun 1964, p360).

Region 1: Here lwy/ci<<1 and the wave equation (A2.1) is approximated

by the Helmhlotz equation;

I)? + %= ] Gaxiy) = 0, Ixl > iyl.
\y|2 \yz’

G(x;y) will be of the form
G(x;3) = a + by, + as(y) ¢+ o, (A2.9

where a, ¢ are as yet undetermined functions of x and }(g) is the
potential of an incompressible flow which satisfies )ilhyz = 0 on
y==tH, y1 >0 and as y:» » ®, ly=1 < H, 8 4 y,:. ; is calcu;ated in
Appendix Al (equation (A1.7). Matchng the far-field form of (A2.9)
with the 'outer field' of (A2.6) gives with (A2.7) and result (A1.8)

of Appendix Al

28{iln(iyl/cr+x/2 +1.5772-1102) = a{-Hln(wlyi/c)+Hln(ulB/xc)}+ xo .

(A2.10)

o9




Region 2: G(x;y) takes the form given in (A2.4) and another equation
is obtained by matching the near-field form of that equsation to
G(x;y) of region 1 given by (A2.9) in the limit wy./c + = In this

way we qbtain

a + by, + ayr + ¢ = Alltiey/c) . (A2.11)

The equations (A2.10), (A2.11) determine a, B, ¢, A in terms of the

functions a and b given in (A2.8). Ve find
a = (-btica/c)/{1+i (wB/xc)f()) , (A2.12)
and

B = iaH/2 , v = —aHf(W)/x , A = (a + B /{iw/c). (A2.13)

where

flw) = 5772 + lu(al/2%xc) - in/2.

(i1) X in the far-field within the duct

In a calculation similar to that outlined in (i) abaove we obtain for A

of (AZ2.4)
A = Q + fexp(-1wx./c)/ (20H/c) (A2.14)
and
A
Q = -Rexp{iwxi/c) , R = -{1-iuHf(w)/xc) . (A2.15a,b)
21wH/c {1 + 10Hf (w)/xc)

In region 1 we find that

G(x;y) = q(!) + r(gy, (A2.16)
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where now

a = {iwB/c) + exp(iaxi/c)/2H = 1, expliax./c) ' (A2.17)

H{l+ 1oHf (0)/xC)

and r(z) is a function of x which is not needed in the calculation of

the main text.

Appendix A3. Complex potential from the boundary layer displacement

Define G(x;y:> as the solution of

£33 4 ¥z - I—iu N5 TI Gax;y) =0, A3. D
1 ¥1l2 3122 C &§x,
which satisfies
fé‘(x-*y'). xz = H+0, x» > O,
362 = (A3.2)

0, x> =0, Ixs} C @,

For wixi/c <(¢ 1 and neglecting convection by the mean flow since M<<1

(A3.1) becomes

[)2 + 2 I Gxiyy) = 0, wixife << 1. (43.3)

3x1?  ¥xa?

ea




If also wlyrl/c << 1, ﬁ(x;y) represents a line source of strength
+1/x respectively on the upper/lower side of a rigid plate with a
rigid wall a distance H below (see figure 19) in an iuncompressible

fluid. In the Z plape (c.f. Appendix A1, (A1.2)) we find that

G(x;y) = RelVa(xiys) + &, wixl/c, olyii/c << 1, (A3.4)

where
Vo = llnIzz-Z.z) + 21n(Z%) . (A3.D)
x 22—2_21 4
A and a are constants. The term in A\ accounts far flow at =\ = @,

Iz} ¢ H and Z, are the images of the points y,+jB20 in the Z plane.

At the plate leading edge, x = (0,H), Z = 1. Ve find from (A3.5)

dVa

dz

=2 [ 1 - 1 , @lyrt/ze <1

zZ=1 x {(1-Z.2) (1-Z-3) (A3.6)
For g, values within a few duct widths of the duct mouth ) is small
and bas been neglected in (A3.6) where the remaining terms are (c.f
Appendix Al) of order {xy./H)-* for y,» << H. The component of the
perturbation potential due to the presence of displacement waves on
the boundary layers of the plate at x> = H$0, x\ > O can, in view of
(A3.1), (43.2) and equat.on (2.8) of the main text be expressed as a
complex potential, V. say, in the pear-field of the plate leading edge
with

Vo = P Va(x;ydexplixy -1ot) dy, , olxi/c << 1. 3.7

o
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Figure 19. Sketch of the flow of equation (A3.4)
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Appendix A4, To determine W(w) by application of the Kutta copdition.

The perturbation potential due to the vorticity wave w. ((2.4b) of the
main text) will, in the vicinity of the plate edge (0,H), approximate
that of an incompressible flow which has a complex potential Va where

Vo = -J ¥ explin{to-t)) lan—Zo ]exp(iuy|/uc)dy|

2ni2xU.) lZ—Zo‘

-§ ¥ explin{to-t}) 1n12+Zo ]exp(iuy./U‘)dy, . (M. D)

2x {2xU.) Z¥Zo*

Zo is the image of the point y,+jb under the mapping (A1.2) of
Appendix Al. The second integral on the right band side of (A4.1)
accounts for the image of the vortex wave in the wall at x= = 0. The
total potential in the vicinity of the edge (0,H) has complex

potential V say, where from Appendix A3, (A3.9) and (A3.4)
V=Vy ¢ Vo (A4.2)

¥. arises from the boundary layer displacement waves while V. is due
directly to the vorticity wave. The fluid velocity at the leading

edge of the plate is

dv = [ d (Vs ¢+ ¥.) dZ f
dz {,un dz dz Z=1
T [ {x/20} (A (Vs + W) /dZ)/{(Z22-1})12=1 , (A4.3)

I




(c.f. (A1.2) of Appendix Al). For the fluid velocity to remain tinite

at the edge we require that

d( Vg + ¥, )/dZ = 0 , Z = 1. (A4 . &)

From equations (A3.6), (A3.9) of Appendix A3 we obtain for Im(y) > 0

(dV¥e/dZ) 1Z=1 = -2(P () /x)expl-iwt) exp(ixy|)d§ , (A4.5)
. -
where the integration variable is the potential o and (Al.4), (A1.6)
ot Appendix Al have been used. Vith (Al1.7) of Appendix Al and

Gradshteyn and Ryzhik (1980, p308) we find

(dVe/dZ) 1271 = -2 (wB/xf)explL(-1xH/0] , (A4 . 6)

where

L(x) = 1pT(x) -xlnx + x . (A4.7)

T(x) is the gamma function (Gradshteyn and Ryzhik 1980, p933).

Differentiation of (Ad.1) gives

]
d¥s| = (2720 (¥/2m)expuito-tHK , (A& 8)
az 1z=1
where
K: expliny: /U Il 1/(1-Zo%)) dy. . (44.9)
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Im(f) denotes the imaginary part of f and Zo is the image of yi+jb in

the Z plane. Condition (A4.4) becomes with (A4.7), (A4.8)

Vi) = (x/2BU‘)expl1uto—L(—ixH/l)]){,. (A4.10)

Ia_ﬂﬂl.wu.e_EV

Bote that (c.f. Appendix Al, (A1.4), (A1.6))

}{ = T + T*(-w) , (A4 1)
where -
T(w) = -iexp(wh/U.)|dw explivz/U.)dz|. (A4.12)
2 dz oV,

w is the complex potential of Appendix Al. T is evaluated as an
integral in the complex z plane of figure 17 and with (A1.7) of

Appendix Al and Gradshteyn and Ryzhik 1980 (p307, p942) we obtain

) “i(H/wexplL¢ 1oH/xUc) )sinbh(wh/Ucdexp(-wH/Uc) , b C H,
\ “i{H/w)expt L(-iwH/xU) Jsinh(wH/Udexp(-wh/Uc) , b > B,
(A4.13)
In the limit wH/U. >> 1, when the duct beight is extremely large
relative to the hydrodynamic length scale U./w, use of the asymptotic

form of L (c.f Gradshteyn and Ryzhik 1980, p940) gives for w > 0

b




7 (1-1) (U H/)*sinh(wb/U. dexp(-wh/U:.) , b C H,

)Lan =

3 (1-1) (U H/w)*sinh (wH/B.)exp(-wh/U:) , b > H,
(A4.14)

correct to neglect of terms of order (U/uwH) relative to umnity.
Calculatiop of V(w) in the case of plape wave radiation from the duct.

In the case of a long wavelength sound wave radiating from the duct
the perturbation potential in the absence of displacement waves is fa
and in the vicinity of the leading edge of the plate it can be treated
as the potential of an incompressible flow. The complex potential of
this flow will be of the form pw(z), where w(z) is given by (Al1.3) of
Appendix 41 and represents flow into the duct which becomes uriform
with speed unity well within the duct. p is chosen to match the near
field of the x, velocity of the incident and reflected waves, #.+¢. of
(3.9), i.e. p = B(j.*lr)/)x. in the limit kox, 4+ 0. HfSeglecting order

N2 relative to unity we find from (3.9), (3.1) of the main text
M T cilofo{1-RtN(R41D)). (A4.1%)

(w) ts found from condition (A4.4) and (A4.7) with ¥, now equal to
pw(z) and (c.f(A1.3) of Appendix Al)
diy l = -2uH/x
dZz 2=1

¥e find for V(o)

V@ = --Dpll B2
2 11 DRofo (I x| HI(1-ReR(I4RI) /2 . (A4.16)
7







